An Eigenvalue Estimate for the $\bar \partial$-Laplacian
نویسندگان
چکیده
منابع مشابه
A New Characterization of the Cr Sphere and the Sharp Eigenvalue Estimate for the Kohn Laplacian
متن کامل
Partial characterization of graphs having a single large Laplacian eigenvalue
The parameter σ(G) of a graph G stands for the number of Laplacian eigenvalues greater than or equal to the average degree of G. In this work, we address the problem of characterizing those graphs G having σ(G) = 1. Our conjecture is that these graphs are stars plus a (possible empty) set of isolated vertices. We establish a link between σ(G) and the number of anticomponents of G. As a by-produ...
متن کاملEigenvalue Bounds for the Signless Laplacian
We extend our previous survey of properties of spectra of signless Laplacians of graphs. Some new bounds for eigenvalues are given, and the main result concerns the graphs whose largest eigenvalue is maximal among the graphs with fixed numbers of vertices and edges. The results are presented in the context of a number of computer-generated conjectures.
متن کاملThe ∞−Laplacian first eigenvalue problem
We review some results about the first eigenvalue of the infinity Laplacian operator and its first eigenfunctions in a general norm context. Those results are obtained in collaboration with several authors: V. Ferone, P. Juutinen and B. Kawohl (see [BFK], [BK1], [BJK] and [BK2]). In section 5 we make some remarks on the simplicity of the first eigenvalue of ∆∞: this will be the object of a join...
متن کاملThe smallest eigenvalue of the signless Laplacian
Recently the signless Laplacian matrix of graphs has been intensively investigated. While there are many results about the largest eigenvalue of the signless Laplacian, the properties of its smallest eigenvalue are less well studied. The present paper surveys the known results and presents some new ones about the smallest eigenvalue of the signless Laplacian.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Differential Geometry
سال: 2002
ISSN: 0022-040X
DOI: 10.4310/jdg/1090351103